1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
| #include "ybwhead/ios.h"
int mod;
inline int pw(int base, int p, const int mod)
{
static int res;
for (res = 1; p; p >>= 1, base = static_cast<long long>(base) * base % mod)
if (p & 1)
res = static_cast<long long>(res) * base % mod;
return res;
}
inline int inv(int x, const int mod) { return pw(x, mod - 2, mod); }
const int mod1 = 998244353, mod2 = 1004535809, mod3 = 469762049, G = 3;
const long long mod_1_2 = static_cast<long long>(mod1) * mod2;
const int inv_1 = inv(mod1, mod2), inv_2 = inv(mod_1_2 % mod3, mod3);
struct Int
{
int A, B, C;
explicit inline Int() {}
explicit inline Int(int __num) : A(__num), B(__num), C(__num) {}
explicit inline Int(int __A, int __B, int __C) : A(__A), B(__B), C(__C) {}
static inline Int reduce(const Int &x)
{
return Int(x.A + (x.A >> 31 & mod1), x.B + (x.B >> 31 & mod2), x.C + (x.C >> 31 & mod3));
}
inline friend Int operator+(const Int &lhs, const Int &rhs)
{
return reduce(Int(lhs.A + rhs.A - mod1, lhs.B + rhs.B - mod2, lhs.C + rhs.C - mod3));
}
inline friend Int operator-(const Int &lhs, const Int &rhs)
{
return reduce(Int(lhs.A - rhs.A, lhs.B - rhs.B, lhs.C - rhs.C));
}
inline friend Int operator*(const Int &lhs, const Int &rhs)
{
return Int(static_cast<long long>(lhs.A) * rhs.A % mod1, static_cast<long long>(lhs.B) * rhs.B % mod2, static_cast<long long>(lhs.C) * rhs.C % mod3);
}
inline int get()
{
long long x = static_cast<long long>(B - A + mod2) % mod2 * inv_1 % mod2 * mod1 + A;
return (static_cast<long long>(C - x % mod3 + mod3) % mod3 * inv_2 % mod3 * (mod_1_2 % mod) % mod + x) % mod;
}
};
#define maxn 131072
#define N (maxn << 1)
int lim, s, rev[N];
Int Wn[N | 1];
inline void init(int n)
{
s = -1, lim = 1;
while (lim < n)
lim <<= 1, ++s;
for (register int i = 1; i < lim; ++i)
rev[i] = rev[i >> 1] >> 1 | (i & 1) << s;
const Int t(pw(G, (mod1 - 1) / lim, mod1), pw(G, (mod2 - 1) / lim, mod2), pw(G, (mod3 - 1) / lim, mod3));
*Wn = Int(1);
for (register Int *i = Wn; i != Wn + lim; ++i)
*(i + 1) = *i * t;
}
inline void NTT(Int *A, const int op = 1)
{
for (register int i = 1; i < lim; ++i)
if (i < rev[i])
std::swap(A[i], A[rev[i]]);
for (register int mid = 1; mid < lim; mid <<= 1)
{
const int t = lim / mid >> 1;
for (register int i = 0; i < lim; i += mid << 1)
{
for (register int j = 0; j < mid; ++j)
{
const Int W = op ? Wn[t * j] : Wn[lim - t * j];
const Int X = A[i + j], Y = A[i + j + mid] * W;
A[i + j] = X + Y, A[i + j + mid] = X - Y;
}
}
}
if (!op)
{
const Int ilim(inv(lim, mod1), inv(lim, mod2), inv(lim, mod3));
for (register Int *i = A; i != A + lim; ++i)
*i = (*i) * ilim;
}
}
#undef N
int n, m;
Int A[maxn << 1], B[maxn << 1];
int main()
{
yin >> n >> m >> mod;
++n, ++m;
for (int i = 0, x; i < n; ++i)
yin >> x, A[i] = Int(x % mod);
for (int i = 0, x; i < m; ++i)
yin >> x, B[i] = Int(x % mod);
init(n + m);
NTT(A), NTT(B);
for (int i = 0; i < lim; ++i)
A[i] = A[i] * B[i];
NTT(A, 0);
for (int i = 0; i < n + m - 1; ++i)
{
yout << A[i].get() << " ";
}
return 0;
}
|
v1.4.14