CF1299C-Water Balance

目录

CF1299C-Water Balance

There are n n water tanks in a row, i i -th of them contains ai a_i liters of water. The tanks are numbered from 1 1 to n n from left to right.

You can perform the following operation: choose some subsegment [l,r] [l, r] ( 1lrn 1\le l \le r \le n ), and redistribute water in tanks l,l+1,,r l, l+1, \dots, r evenly. In other words, replace each of al,al+1,,ar a_l, a_{l+1}, \dots, a_r by al+al+1++arrl+1 \frac{a_l + a_{l+1} + \dots + a_r}{r-l+1} . For example, if for volumes [1,3,6,7] [1, 3, 6, 7] you choose l=2,r=3 l = 2, r = 3 , new volumes of water will be [1,4.5,4.5,7] [1, 4.5, 4.5, 7] . You can perform this operation any number of times.

What is the lexicographically smallest sequence of volumes of water that you can achieve?

As a reminder:

A sequence a a is lexicographically smaller than a sequence b b of the same length if and only if the following holds: in the first (leftmost) position where a a and b b differ, the sequence a a has a smaller element than the corresponding element in b b .

The first line contains an integer n n ( 1n106 1 \le n \le 10^6 ) — the number of water tanks.

The second line contains n n integers a1,a2,,an a_1, a_2, \dots, a_n ( 1ai106 1 \le a_i \le 10^6 ) — initial volumes of water in the water tanks, in liters.

Because of large input, reading input as doubles is not recommended.

Print the lexicographically smallest sequence you can get. In the i i -th line print the final volume of water in the i i -th tank.

Your answer is considered correct if the absolute or relative error of each ai a_i does not exceed 109 10^{-9} .

Formally, let your answer be a1,a2,,an a_1, a_2, \dots, a_n , and the jury’s answer be b1,b2,,bn b_1, b_2, \dots, b_n . Your answer is accepted if and only if aibimax(1,bi)109 \frac{|a_i - b_i|}{\max{(1, |b_i|)}} \le 10^{-9} for each i i .

1
2
4
7 5 5 7
1
2
3
4
5.666666667
5.666666667
5.666666667
7.000000000
1
2
5
7 8 8 10 12
1
2
3
4
5
7.000000000
8.000000000
8.000000000
10.000000000
12.000000000
1
2
10
3 9 5 5 1 7 5 3 8 7
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
3.000000000
5.000000000
5.000000000
5.000000000
5.000000000
5.000000000
5.000000000
5.000000000
7.500000000
7.500000000
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include "ybwhead/ios.h"
int l, r;
const int maxn = 1e6 + 10;
long long sum[maxn];
int q[maxn];
int main()
{
    // int TTT;
    // yin >> TTT;
    // while (TTT--)
    {
        int n;
        yin >> n;
        for (int i = 1; i <= n; i++)
        {
            int x;
            yin >> x;
            sum[i] = sum[i - 1] + x;
        }
        l = r = 0;
        for (int i = 1; i <= n; i++)
        {
            while (l < r && (sum[i] - sum[q[r]]) * (q[r] - q[r - 1]) <= (sum[q[r]] - sum[q[r - 1]]) * (i - q[r]))
                r--;
            q[++r] = i;
        }
        for (int i = 1; i <= r; i++)
        {
            double xx = (double)(sum[q[i]] - sum[q[i - 1]]) / (q[i] - q[i - 1]);
            for (int j = q[i - 1] + 1; j <= q[i]; j++)
                printf("%.9lf\n", xx);
        }
    }
    return 0;
}
来发评论吧~
Powered By Valine
v1.4.14